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Mean flow properties of turbulent magnetohydrodynamic channel flow with electri-
cally insulating channel walls are studied using high-resolution direct numerical
simulations. The Lorentz force due to the homogeneous wall-normal magnetic field
is computed in the quasi-static approximation. For strong magnetic fields, the mean
velocity profile shows a clear three-layer structure consisting of a viscous region
near each wall and a plateau in the middle connected by logarithmic layers. This
structure reflects the significance of viscous, turbulent, and electromagnetic stresses in
the streamwise momentum balance dominating the viscous, logarithmic, and plateau
regions, respectively. The width of the logarithmic layers changes with the ratio of
Reynolds- and Hartmann numbers. Turbulent stresses typically decay more rapidly
away from the walls than predicted by mixing-length models.

1. Introduction
Turbulent magnetohydrodynamic (MHD) flows at low magnetic Reynolds numbers

occur in a variety of metallurgical processes (Davidson 1999; Moreau 2003) such as the
electromagnetic braking of molten steel in continuous casting and in electromagnetic
stirring of melts. They may also occur in liquid-metal cooling blankets for the toroidal
plasma chamber in present and future fusion reactor designs.

By comparison with ordinary fluid flows, the experimental investigation of MHD
flows is complicated by the opacity and corrosiveness of liquid metals. Experiments
typically provide very limited information on the flow structures and statistics. Reliable
numerical simulations should therefore be even more of a necessity for turbulent MHD
flows than in ordinary hydrodynamics. However, many MHD flow computations
are performed using the Reynolds-averaged Navier–Stokes (RANS) equations with
standard turbulence models and wall functions. There are current efforts to improve
on this ad hoc approach through the development of MHD-specific turbulence models
(Kenjereš & Hanjalić 2000; Widlund, Zahrai & Bark 1998) and wall functions, both
for RANS and large-eddy simulations (LES).

Direct numerical simulations (DNS) are valuable to this effort as a database for
model calibration. They are also important for studying fundamental aspects of
turbulent MHD flows such as anisotropy at large and small length scales or Joule
dissipation. DNS have been performed in periodic domains, i.e. without wall effects
(Zikanov & Thess 1998; Knaepen, Kassinos & Carati 2004). By contrast, DNS of
wall-bounded turbulent MHD flows (Lee & Choi 2001; Satake et al. 2005) have been
fewer and less systematic. Recent LES of turbulent Hartmann flow by Kobayashi
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(2006), i.e. of channel flow with a homogeneous wall-normal magnetic field, have
examined the performance of certain subgrid-stress models but were only compared
with experimental measurements of limited accuracy. Our present work, in which we
report a series of DNS of turbulent Hartmann flow, should therefore be of interest
for those involved in LES and RANS modelling for MHD flows.

Experimental and theoretical work on Hartmann flow goes back to Hartmann
(1937). In the laminar case the bulk velocity is uniform because of the balance
of Lorentz force and pressure gradient. Viscous effects are confined to the so-
called Hartmann layers near the channel walls. The size of these layers is inversely
proportional to the magnetic field strength, which is measured by the dimensionless
Hartmann number.

Hartmann & Lazarus (1937) took measurements of the pressure loss for laminar and
turbulent Hartmann flows. Later experiments, in particular by Branover, Lykoudis,
and their coworkers, have also provided measurements of velocity profiles and
turbulent stresses but could not resolve well the near-wall regions. The book by
Branover (1978) summarizes these works. At the same time, turbulence models based
on the mixing-length hypothesis were proposed by various authors. Some of these
models account for the damping of the turbulent stress due to the Lorentz force
through suitable prefactors in the mixing-length ansatz. The adjustable parameters
are then fitted to measurements of pressure loss in the experiments. An exemplary
work is that by Lykoudis & Brouillette (1967), who formulated their own model
and performed experiments as well. Recently, Alboussière & Lingwood (2000) have
revisited this problem and formulated a mixing-length model without heuristic MHD
corrections to the ansatz for the turbulent stresses from ordinary turbulent shear flow.

Further recent works have focused on the problem of transition to turbulence in
Hartmann flow. As in other shear flows, ordinary linear stability theory provides an
instability threshold far beyond the practically observed limits. Moresco & Alboussière
(2004) performed an experiment in an annular duct and detected transition at
variance with earlier experiments on re-laminarization but in agreement with our own
numerical studies (Krasnov et al. 2004; Zienicke & Krasnov 2005), in which a two-step
transition scenario is assumed. It is based on transient amplification of streamwise-
independent vortices in the laminar Hartmann layers, which subsequently become
unstable to three-dimensional noise. The present paper arises from a continuation of
our transition simulations into the turbulent parameter range.

The goal of the DNS reported in this paper is to obtain developed turbulent
states for different Reynolds and Hartmann numbers. For these turbulent states we
systematically examine the structure of mean profiles and their parameter dependence.
In particular, we approach the case of an isolated, turbulent Hartmann layer by
increasing the Hartmann number Ha for fixed ratios of Reynolds and Hartmann
numbers. Comparison with other works will be made through the solution of
the mixing-length turbulence models by Lykoudis & Brouillette (1967) suitable for
interacting turbulent Hartmann layers, and of the recent model by Alboussière &
Lingwood (2000) for an isolated turbulent Hartmann layer. We shall also assess the
criterion for the non-overlap of turbulent Hartmann layers proposed in Harris (1960)
and later in Alboussière & Lingwood (2000) based on our simulation results.

2. Parameter definition and simulation procedure
Our numerical study of turbulent Hartmann flow is based on the quasi-static

approximation of liquid-metal MHD (Branover 1978). This approximation has been
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R Ha Lx Ly Nx × Ny × Nz Rav Reτ cf Ta

450 10 5π 2π 256 × 256 × 128 4.05 × 102 240.7 7.06 × 10−3 223

450 15 10
3

π 4
3
π 256 × 256 × 256 4.20 × 102 359.2 6.50 × 10−3 212

450 20 3π 6
5
π 256 × 256 × 256 4.27 × 102 475.8 6.21 × 10−3 128

450 30 10
3

π 16
15

π 256 × 256 × 256 4.35 × 102 710.8 5.93 × 10−3 207

500 10 4π 2π 256 × 256 × 128 4.5 × 102 268.2 7.11 × 10−3 300

500 15 10
3

π 4
3
π 256 × 256 × 256 4.667 × 102 398.8 6.49 × 10−3 240

500 20 8
3
π 16

15
π 256 × 256 × 256 4.75 × 102 528.4 6.18 × 10−3 114

500 30 2π 4
5
π 256 × 256 × 256 4.833 × 102 785.9 5.87 × 10−3 92

700 10 10
3

π 4
3
π 256 × 256 × 128 6.30055 × 102 365.0 6.72 × 10−3 328

700 15 8
3
π 16

15
π 256 × 256 × 256 6.5333 × 102 538.0 6.02 × 10−3 84

700 20 2π 4
5
π 256 × 256 × 256 6.65 × 102 708.6 5.67 × 10−3 116

700 30 2π 4
5
π 512 × 512 × 256 6.76 × 102 1047.3 5.33 × 10−3 58

900 10 3π 6
5
π 256 × 256 × 256 8.101 × 102 456.0 6.34 × 10−3 165

900 15 12
5

π π 256 × 256 × 256 8.40 × 102 681.3 5.84 × 10−3 183

900 20 2π 4
5
π 512 × 256 × 256 8.55 × 102 891.9 5.44 × 10−3 82

900 25 2π 4
5
π 512 × 512 × 256 8.64 × 102 1101.0 5.20 × 10−3 51

Table 1. Simulation parameters and results. Nx , Ny and Nz denote the number of collocation
points with respect to the coordinates x, y and z. The time interval Ta is the averaging time in
convective units d/U0.

validated by Lee & Choi (2001) through comparison with the full MHD equations.
Our pseudospectral numerical code is based on a Fourier–Chebyshev expansion.
The equations and boundary conditions as well as details of the numerical method
can be found in Krasnov et al. (2004). Since then, the code has been improved by
implementing a second-order-accurate time-stepping method and de-aliasing. We
choose the coordinate system such that the channel walls coincide with planes
z = const. The streamwise coordinate is x, and the wall-normal coordinate is z.
The Hartmann number Ha and the Hartmann layer thickness δ are defined by

Ha =
d

δ
, δ =

1

B0

√
ρν

σ
, (2.1)

where B0 is the applied magnetic field and d denotes the half-channel width. The
other symbols are the electric conductivity σ , the density ρ and kinematic viscosity ν

of the liquid. In the simulations, the volume flux Q per span-width in the streamwise
direction, and thereby the average streamwise velocity Uav, are prescribed. For a
given Hartmann number, Uav and the laminar centreline velocity U0 are related by
Uav ≈ U0 (1 − 1/Ha) for Ha > 5. This relation is found by integrating the laminar velo-
city profile (Branover 1978). As in our work on transition (Krasnov et al. 2004) we shall
prescribe the Reynolds number R =U0δ/ν based on the Hartmann layer thickness and
U0. The Reynolds number Rav is based on Uav instead of U0. Likewise, one can define
two different global Reynolds numbers, namely Re= HaR and Reav = HaRav based
on the half-channel width d and U0 and Uav, respectively. Table 1 lists the parameter
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combinations for R and Ha in our simulations as well as the dimensions Lx and Ly

of the computational domain (in units of d). It also contains the friction coefficient
cf = 2τw/ρU 2

av and the friction Reynolds number Reτ = uτd/ν, which are simulation
results. The friction velocity uτ is defined with the average wall shear stress τw = ρu2

τ .
In the simulations, the dimensions Lx and Ly had to be large enough to obtain

a turbulent state without long-range spatial correlations on the scale of Lx and Ly .
At the same time, they had to be chosen as small as possible in order to keep the
resolution requirements and the necessary amount of computer time manageable. We
have therefore reduced Lx and Ly as Reτ increased when moving to higher Ha at
fixed R (as can be seen in the snapshots of figure 1). Reduction of Lx and Ly with
increasing Reτ is also used in ordinary channel turbulence (Moser, Kim & Mansour
1999). We have checked that two-point correlations in the streamwise and spanwise
coordinates are essentially zero at maximum separation (half the lateral domain size)
for a fixed position z = 1/Ha. The number of modes was large enough to ensure that
energy spectra show significant decay at high wavenumbers.

The simulations were typically started with initial data from a completed simulation
with similar value of Reav. Averaging of the flow quantities was started only after
the transition to the new statistically stationary state had been completed. For this
purpose we have monitored the transients in global quantities such as the total kinetic
energy of the flow. The averaging time Ta was on the order of 100d/U0. Each of
the runs in table 1 therefore represents a substantial computation. The simulations
were mostly performed on cluster computers with Pentium 4 or Opteron processors.
The typical mono-processor time for a simulation with Nx = Ny = Nz = 256 was about
4000 hours. The case R = 900 and Ha = 25 took about 12000 hours.

3. Mean flow properties
Figure 1 illustrates how the streamwise velocity distribution develops a plateau

upon increasing the magnetic field strength while R is kept constant. The turbulence
is increasingly confined near the walls but develops smaller scales thanks to the
increase in Reτ . The case with the relatively small value Ha = 10 in figure 1(b)
appears rather similar to ordinary hydrodynamics shown in figure 1(a).

The mean flow properties of Hartmann flow are governed by the Reynolds equation

ρν
∂2u

∂z2
+

∂τT

∂z
− σB2

0 (u − Uav) − ∂p

∂x
=0, (3.1)

where u(z) is the averaged streamwise velocity and τT (z) = − ρ〈u′w′〉 is the turbulent
stress caused by the fluctuating streamwise and wall-normal velocity components
u′ and w′. The Lorentz force is given by −σB2

0 (u − Uav). One can write (3.1) as
dτ/dz = ∂p/∂x, where τ is the sum of the viscous stress τv = ρνdu/dz, the turbulent
stress τT and the electromagnetic stress τm representing the integrated Lorentz force
term in (3.1). As in ordinary channel flow, the total stress τ is an antisymmetric linear
function with respect to the middle of the channel.

The non-dimensional form of (3.1) based on uτ and the length scale ν/uτ was
derived in Lykoudis & Brouillette (1967). It is

d2u

dz2
+

dτT

dz
− 2

R2
avcf

(u −
√

2/cf ) +
1

RavHa

√
2

cf

= 0. (3.2)
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Figure 1. Snapshots of the streamwise velocity component in a plane x = const. Non-magnetic
flow at Re = 3300 (a) and turbulent Hartmann flow at R = 500 and Ha =10 (b), Ha =
15 (c) and Ha = 30 (d).

It is customary to write the non-dimensional quantities with a superscript +, which
we omit for simplicity in (3.2).

Profiles of the mean streamwise velocity component are shown in figure 2. We
can identify three different regions in the profiles in figure 2(a–c). The viscous
sublayer (with u+ ∼ z+) marked as region I is followed by a logarithmic layer (with
u+ ∼ A log(z+)+B) marked as region II, which starts around z+ ∼ 30 . . . 40. A plateau
region marked III is formed at sufficiently large Ha. The profiles for different Ha

then essentially coincide except for the width of the plateau. This can be seen clearly
at R = 450 and R = 500, where the logarithmic range is rather short. Notice that we
have drawn the mean velocity profiles for the entire channel in these plots to highlight
the plateau region and to distinguish the different values of Ha by the falling flanks
of the profiles. On physical grounds they should only have been drawn up to the
middle of the channel.

Figure 2(a–c) also shows that the logarithmic range becomes wider as R increases.
Figure 2(d) compares the profiles at the highest Ha for each R. We see clearly
how the plateau shrinks upon increasing R for Ha =30. For R =900 we have only
managed a simulation for Ha =25, where a plateau is barely present. From R = 450
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Figure 2. Semi-logarithmic plots of mean velocity profiles for R = 450 (a), R = 500 (b) and
R = 700 (c), in units based on the friction velocity uτ . (d) The profiles at the highest Ha for
each R. The logarithmic law drawn in (a) and (b) is somewhat arbitrary.
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Figure 3. Stress distributions from DNS: fractions of the viscous, turbulent and
electromagnetic stress for R = 450, Ha = 30 (a) and R =900, Ha =25 (b).

to R = 700 the slope A increases whereas the offset B is decreases. The difference
between R = 700 and R = 900 in the logarithmic range is only slight. At R =900 and
Ha = 25 the values A= 2.4 and B = 5.65 provide a good fit.

The increasing width of the logarithmic layer with R is related to larger
contributions of the turbulent stress to the total stress. Figure 3 shows the relative
size of the viscous, turbulent and electromagnetic stress terms as functions of the wall
distance. For R = 450 and Ha = 30 the turbulent stress contributes less than half of
the total stress over a short range only. By contrast, it is dominant over a significant
range for R = 900.
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Figure 4. Turbulent stress distributions from DNS (bold line) and from models of Lykoudis
& Brouillette (L & B) (dot-dotted) and Alboussière & Lingwood (A & L) (dashed). Flow
regimes are R = 450, Ha = 30 (a), R =500, Ha = 30 (b), R = 700, Ha = 30 (c) and R = 900,
Ha =25 (d). The A & L model assumes Ha → ∞ and is limited to z+ > 11.3.

The models by Lykoudis & Brouillette (1967) and Alboussière & Lingwood (2000)
for the turbulent stress τT in (3.2) are based on the mixing-length ansatz with certain
additional corrections. Lykoudis & Brouillette (1967) propose

τT = γ1(z) γ2(z, cf , R) γ3(cf , R) κ2

(
z
du

dz

)2

(3.3)

with the van Driest correction γ1 to suppress the turbulent stress near the wall. The
factor γ2 is introduced to account for the magnetic damping of vortices perpendicular
to the magnetic field, and the additional coefficient γ3 describes the magnetic damping
of turbulence away from the wall. The von Kármán constant is κ = 0.4.

Equation (3.2) with this ansatz amounts to a nonlinear eigenvalue problem for cf .
The three boundary conditions are u = 0, du/dz = 1 at z = 0 and du/dz =0 in the
middle of the channel located at zm =Reav

√
cf /2.

The model of Alboussière & Lingwood (2000) applies in the limit Ha → ∞ in
(3.2), whereby the pressure term drops out and zm → ∞. The correction terms γi of
Lykoudis & Brouillette (1967) are discarded, and the viscous sublayer is introduced
by setting the sum of viscous and turbulent stresses equal to the wall stress at
z+ =11.3. Another change is to treat the sum of viscous and turbulent stresses as
being represented by the mixing-length ansatz (3.3).

Figure 4 shows that the peak values of the distributions of τT are captured
well by the model of Lykoudis & Brouillette (1967), in contrast to the model of
Alboussière & Lingwood (2000). The decay of τT is more rapid than predicted by
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Figure 5. cf vs. R (a) and vs. 1/Ha (b). (c) Turbulent stresses for R = 500 from DNS and
(d) cf vs. R from models and DNS for Ha → ∞. The laminar result cf =2/R for infinite Ha
is shown for comparison in (a, d), which are in logarithmic scale.

the models, with particularly large differences for the higher values of R. Concerning
the apparently good agreement between our results and the model of Lykoudis &
Brouillette (1967) one should also bear in mind that the friction Reynolds numbers
are up to 5% larger for the model, i.e. the positions of the peaks would be somewhat
shifted when the results are plotted in units of the half-channel width d and centreline
velocity U0.

4. Friction coefficient
The dependence of the friction coefficient cf on R from the DNS and from the

model of Lykoudis & Brouillette (1967) is shown in figure 5(a). The differences are
significant for low R, where the DNS results show a local maximum at R =500 for
Ha = 10 and Ha = 15, in contrast to the model. This behaviour suggests proximity of
the transition threshold, which has been detected at R ≈ 400 in Krasnov et al. (2004).

The dependence of cf on Ha at fixed R is shown in figure 5(b). We plot cf vs.
1/Ha because the model of Lykoudis & Brouillette (1967) satisfies the asymptotic
relation

cf ∼ c
(0)
f (Rav) +

1

Ha
c

(1)
f (Rav) (4.1)

for 1/Ha → 0. Assuming that the expansion coefficients of cf in (4.1) are continuously
differentiable functions of Rav, it is clear that dependence of cf on 1/Ha for fixed
R instead of fixed Rav is also linear for Ha → ∞ because Rav ∼ R (1 − 1/Ha) (for
Ha > 5). We see that the DNS results lie on straight lines in figure 5(b) except for the
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lowest values of Ha for R = 700 and R = 900. We can therefore extrapolate our DNS
results to the limit Ha → ∞.

The asymptotic relation (4.1) can be justified from (3.2), in which the pressure
term is a linear perturbation term in 1/Ha (provided that the boundary condition
du/dz = 0 applies effectively at zm → ∞). The other terms in (3.2) are independent
of Ha, in particular the turbulent stress term proposed by Lykoudis & Brouillette
(1967). Figure 5(c) demonstrates that the turbulent stress becomes independent of
Ha in our DNS when Ha is sufficiently large, which supports the asymptotic linear
dependence of cf on 1/Ha.

The extrapolation Ha → ∞ allows us to compare cf from our DNS and from the
model of Lykoudis & Brouillette (1967) with the model of Alboussière & Lingwood
(2000) in figure 5(d). The phenomenological model by Harris (1960) is also shown
there. It assumes that the logarithmic layer is cut off by the plateau when the
interaction parameter Nτ =Ha2/Reτ based on Reτ exceeds the threshold Nτ ≈ 0.6.
Assuming that the plateau velocity equals the average velocity in the limit Ha → ∞,
formula (7.11) in Harris (1960) provides the relation√

2/cf = 2.456 ln
(
R2cf /2

)
+ 4.08, (4.2)

plotted in figure 5(d). Since the velocity profiles of the previous section change from
the logarithmic law to the plateau over a rather narrow z+-interval and since, in
addition, the agreement of our extrapolated DNS results with (4.2) is fairly good,
a threshold criterion for Nτ may indeed apply for the non-overlap of the turbulent
Hartmann layers (at least in the range of R values studied in the DNS). In contrast to
the Harris model, the two mixing-length models overestimate our extrapolated DNS
results for cf .

5. Conclusions
Our systematic DNS study of turbulent Hartmann flow has focused on the

dependence of mean flow properties on the parameters R and Ha. For fixed R we have
examined how the case of an isolated turbulent Hartmann layer is approached upon
increasing Ha. The mean velocity profile then develops a three-layer structure with an
increasingly wide plateau. The logarithmic range broadens with R, and the coefficients
of the logarithmic law approach those for ordinary hydrodynamic channel flow. This
behaviour is in line with the argument from Alboussière & Lingwood (2000), who
claim that MHD effects inside the Hartmann layer should be negligible because the
local interaction parameter based on the laminar Hartmann layer thickness is small
compared with unity. However, turbulent stress distributions from our DNS show a
better agreement with the model of Lykoudis & Brouillette (1967), where additional
MHD correction terms are incorporated in the mixing-length ansatz. It is tempting
to interpret this as a low-Reynolds-number effect. The focus of future DNS should
be on anisotropic features of the Joule dissipation and on statistical properties of the
fluctuations in turbulent Hartmann flow.
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